Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method

Authors

  • Fabio Carlos Da Rocha Federal University of Sergipe, Department of Civil Engineering, Campus São Cristovão, Aracaju-SE, 49100-000, Brazil
  • Luís Philipe Ribeiro Almeida Federal University of Alagoas, Laboratory of Scientific Computing and Visualization Technology Center, Campus A.C. Simões, Maceió-AL, 57092-970, Brazil
Abstract:

The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation nodes are positioned in the zeros of orthogonal polynomials (Legendre, Lobatto, or Chebychev) or equally spaced nodal bases. A comparative study between the bases in the recovery of solutions to 1D and 2D elastostatic problems are performed. Examples are evaluated, and a significant improvement is observed when the SFEM, particularly the Lobatto approach, is used in comparison to the equidistant base interpolation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

full text

Benchmarking high order finite element approximations for one-dimensional boundary layer problems

In this article we investigate the application of high order approximation techniques to one-dimensional boundary layer problems. In particular, we use second order differential equations and coupled second order differential equations as case studies. The accuracy and convergence rate of numerical solution obtained with Lagrange, Hermite, B-spline finite elements and C∞ generalized finite elem...

full text

Cover interpolation functions and h-enrichment in finite element method

This paper presents a method to improve the generation of meshes and the accuracy of numerical solutions of elasticity problems, in which two techniques of h-refinement and enrichment are used by interpolation cover functions. Initially, regions which possess desired accuracy are detected. Mesh improvment is done through h-refinement for the elements existing in those regions. Total error of th...

full text

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

full text

A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis

Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...

full text

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  145- 159

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023